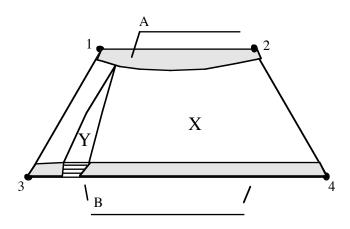

Geology 420	Name	
Mineralogy Final Exam 2007 1. Short answer:		NDSU
a) The names and formulae of	of two halides and a sulfide with the [NaCl] structure.	[6 pts]
b) Three examples of mineral	l compositions (and all names) that have polymorphs	. [9 pts]
c) For an element with multip positive charge. Why?	ple valence states, how does ionic radius change with	increasing [3 pts]
, , ,	hat produces an identical motif after a translation of o	
e) The crystal face that has in -1/2 along the c axis is the	ntercepts of 1/2 along the a-axis, is parallel to the b-axis ().	xis, and [2 pts]
	n be used as ores for what metals? ite; chalcopyrite; beryl	[4 pts]
	From adding a center of symmetry (an inversion) to 62 efore" and "after" stereograms.	22? [8 pts]

2. Supply the missing trioctahedr	al phyllosilicate nar	me or formula, and a schematic dr	awing,
using our convention:	= octahedral layer, a	and $ = tetrahedral $	[8 pts]
brucite		$Mg(OH)_2$	
	\Box	$Mg_6Si_4O_{10}(OH)_8$	
talc			
phlogopite			
		$Mg_3Si_4O_{10}(OH)_2$ - $Mg_3(OH)_2$	()6
-		iform habit. Explain from your knowing to illustrate your answer.	[5 pts]
4. A client asks you to evaluate a CaWO ₄ . Show work for full of		ore, which seems to contain scheel	ite,
occur in the sample. That a 2Θ angle of 34.20	The diffractogram shows the contract of the co	and determine that scheelite does nowed a peak for the 200 plane of uK α X-rays ($\lambda = 1.5418$ Å). What From this information is a-axis?	scheelite is the
			(continued

- b) The space group of scheelite is I4₁/a. It has a ______ Bravais lattice and point group _____ in the ____ crystal [3 pts] system. c) What is the weight % W metal in scheelite? W = 183.85 g/mol; Ca = 40.08 g/mol, O = 16.0 g/mol. [4 pts] d) You visually estimate the ore contains 5 wt.% scheelite. If the ore is to be economical to mine, it must contain a minimum of 1.0 wt.% W metal. Assuming the entire ore body is identical to your sample (a very bad assumption), estimate whether the ore body is economical to mine by calculating its W content. [4 pts] e) To validate this estimate, your next step will be to measure the whole rock content of W using XRF. Describe this instrument to your client. What is the source of excitation, and what is measured? [5 pts]
- 5. Feldspars often weather to phyllosilicates. Write a balanced reaction for the weathering of potassium feldspar (K-spar) to kaolinite in the form: [4 pts]
 K-feldspar + H₂O + H⁺ -> kaolinite + K⁺ + H₄SiO₄


6. For the phase diagram below, in an equilibrium, continuous slow cooling scenario for a melt with composition An_{70} : [15 pts]

- a. What is the T of first crystallization? _____
- b. What is the T of final crystallization?
- c. Write the names and formulas for An and Ab below them on the diagram.
- d. What are the two curved lines called (label them on the diagram)?
- e. What is the composition of the final crystallized rock?

- 7. a) What are the name and the formula of the mineral at each number on the diagram?
 - b) What is the name of each solid solution at A and B?
 - c) What minerals coexist at X and Y?.

[8 pts]

